Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites

نویسندگان

  • Amy C. Barr
  • Robert T. Pappalardo
  • Shijie Zhong
چکیده

[1] At the temperatures and stresses associated with the onset of convection in an ice I shell of the Galilean satellites, ice behaves as a non-Newtonian fluid with a viscosity that depends on both temperature and strain rate. The convective stability of a non-Newtonian ice shell can be judged by comparing the Rayleigh number of the shell to a critical value. Previous studies suggest that the critical Rayleigh number for a non-Newtonian fluid depends on the initial conditions in the fluid layer, in addition to the thermal, rheological, and physical properties of the fluid. We seek to extend the existing definition of the critical Rayleigh number for a non-Newtonian, basally heated fluid by quantifying the conditions required to initiate convection in an ice I layer initially in conductive equilibrium. We find that the critical Rayleigh number for the onset of convection in ice I varies as a power ( 0.6 to 0.5) of the amplitude of the initial temperature perturbation issued to the layer, when the amplitude of perturbation is less than the rheological temperature scale. For larger-amplitude perturbations, the critical Rayleigh number achieves a constant value. We characterize the critical Rayleigh number as a function of surface temperature of the satellite, melting temperature of ice, and rheological parameters so that our results may be extrapolated for use with other rheologies and for a generic large icy satellite. The values of critical Rayleigh number imply that triggering convection from a conductive equilibrium in a pure ice shell less than 100 km thick in Europa, Ganymede, or Callisto requires a large, localized temperature perturbation of a few kelvins to tens of kelvins to soften the ice and therefore may require tidal dissipation in the ice shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onset of convection in the icy Galilean satellites: Influence of rheology

[1] Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the ice I shells of Europa, Ganymede, and Callisto. We use numerical methods and existing parameterizations of the critical Rayleigh number to determine the conditions required to trigger convection in an ice I shell with each of the stress-, temperatureand grain size–dependent rheologi...

متن کامل

Convection in ice I shells and mantles with self-consistent grain size

[1] The viscosity of ice I is grain size dependent for temperature and stress conditions appropriate for ice I shells and mantles of large and midsized icy satellites. Satellite thermal evolution, heat flux, critical shell thickness for convection, brittle/ductile transition temperature, and potential for surface deformation are therefore grain size dependent. Using measured grain sizes from te...

متن کامل

Numerical Simulations of Non-newtonian Convection in Ice: Application to Europa

Introduction: Numerical simulations of solidstate convection in Europa’s ice shell have so far been limited to consideration of Newtonian flow laws, where the viscsoity of ice is strongly dependent upon temperature, predicting that a stagnant lid should form at the top (10-40%) of a convecting ice shell [1, 2]. Such large thicknesses seem to contradict estimates of the effective elastic thickne...

متن کامل

Convection in Icy Satellites with Self-consistent Grain Size

Introduction: Ice grain size controls the geodynamic evolution of the ice I shells of large to mid-sized icy satellites. Grain size controls the viscosity of ice [1,2], and thus, the heat flux from the outer ice I shell by controlling the likelihood and efficiency of convection. In addition, the rheology of ice controls the depth to the brittle/ductile transition, which is a key control on endo...

متن کامل

A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus

To explain the formation of surface features on Europa, Enceladus, and other satellites, many authors have postulated the spatial localization of tidal heating within convective plumes. However, the concept that enhanced tidal heating can occur within a convective plume has not been rigorously tested. Most models of this phenomenon adopt a tidal heating with a temperature-dependence derived for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004